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An Analytic Method for Longitudinal Mortality
Studies
David Strauss, PhD; Robert Shavelle, PhD; Michael J. DeVivo, DrPH; Steven Day

Our knowledge of mortality risks comes largely from longitudinal
(cohort) studies. The most commonly used analytic tool is the Cox
proportional hazards model for survival analysis. An alternative ap-
proach is a simple cross-sectional analysis of person-years. The key
to the method is logistic regression, where the outcome variable is
lived/died in the given year and the explanatory variables are age,
sex, and other potential risk factors. This approach can be used to
model any dichotomous outcome and has several important advan-
tages over the more traditional survival analysis. As an example, we
compare the two methods using a large data base of patients with
spinal cord injury.

Address: Department of Statistics
(Strauss, Shavelle, Day), University
of California, Riverside, CA 92521–
0138; Spain Rehabilitation Center
(DeVivo), University of Alabama,
Birmingham, AL 35294.

Correspondent: David Strauss, PhD,
FASA.

Key words: Cox regression model,
mortality, life expectancy, person-
year, survival.

Received: August 12, 2000.

Accepted: September 1, 2000.

Acentral topic in insurance medicine is
the mortality risk associated with seri-

ous medical conditions such as brain or spi-
nal cord injuries, cerebral palsy, or cancer.
Our knowledge about these risks comes pri-
marily from research studies. The research
literature is scattered across the various dis-
ciplines of application: rehabilitation medi-
cine, neurology, cancer, and others. In some
respects, this is unfortunate because the stud-
ies raise similar research questions and share
common methodological issues.

In these studies, the predominant study de-
sign is longitudinal, subjects being followed
until death or the end of the study period.
Typical questions are

(1) What patient characteristics most affect
mortality risk?

(2) How is mortality affected by time since

injury (in the case of spinal cord or brain
injuries) or time since diagnosis or stage
of disease (in the case of cancer)?

(3) Has there been a secular trend (rates per-
haps falling over time in response to im-
provements in treatment)?

What the medical director requires is in-
formation on the mortality risk for any spe-
cific combination of the above. For example,
one might wish to know the risk under cur-
rent conditions for a 20-year-old male who is
2 years postinjury and has a Frankel grade A
(the most severe) spinal injury to the third
cervical vertebra.

Any research study attempting to answer
such questions uses (1) a longitudinal data
base tracking a large number of patients and
(2) an analytic method for separating and
identifying the effects of various patient char-



JOURNAL OF INSURANCE MEDICINE

218

Table 1. Some Major Data Sources for Longitudinal
Mortality Studies

Cerebral palsy
United States California Developmental Disabili-

ties Database1–3

Britain Merseyside Database4,5

Canada British Columbia data6

Vegetative state
United States California Developmental Disabili-

ties Database7,8

Israel Sazbon et al9,10

Japan Higashi et al11–13

Spinal cord injury
United States National Model Systems data

base14–17

Britain Frankel et al,18 Coll et al19

Australia Yeo et al20

Denmark Hartkopp et al21

Traumatic brain injury
United States Traumatic Coma Data Bank22

California Developmental Disabili-
ties Database23,24

Britain Roberts,25 Lewin et al26

acteristics. The chief sources of data for some
major chronic disabilities are indicated in Ta-
ble 1.1–26 Among the methods for analyzing
multiple risk factors on longitudinal (cohort)
data, generally known as survival analysis,
by far the most widely used is the Cox pro-
portional hazards model. In this framework
one estimates the survival curve, which gives
a subject’s probability of surviving any spec-
ified number of months or years. The curve
for a given subject depends on his or her age,
sex, severity of condition, and other risk fac-
tors. The texts by Collett27 and Lee28 give
good coverage of the methods, and the re-
view article of Singer and Willett29 is an ex-
cellent introduction.

For the needs of the medical director, how-
ever, the Cox survival model has serious
drawbacks. Specifically, (a) it does not con-
veniently handle cases where subjects may
enter the study several years after injury date
or first diagnosis and (b) it is cumbersome
when the subject’s characteristics, such as
stage of cancer or severity of disability,

change over time. The method is particularly
awkward at separating the intertwined ef-
fects of age, current calendar year, and time
since onset or diagnosis. For example, one of-
ten wishes to model a secular trend to cap-
ture the reduction in mortality risk over time
due to improved treatment. This will gener-
ally violate the proportional hazards assump-
tion in the Cox model.27 It is possible to cope
with this by introducing time-varying covar-
iates,27 but the analysis quickly becomes very
cumbersome.

The problems arise because the method is
cohort-based: the unit of analysis is a single
patient followed over time. What is needed is
an analysis of risk over the short-term, such
as a year. Then the research questions can be
asked in a more convenient and direct way:
How is the risk of dying in the next 12
months, say, affected by the subject’s age, sex,
and other characteristics together with the
time since injury and current calendar year?
In this approach, the unit of analysis is a per-
son-year rather than a person.

The person-year methodology, which is
simple and convenient to use, is not new. It
has been extensively used in the Framingham
study of heart disease.30 Guilkey and Rind-
fuss31 and McLanahan32 have applied the
method in sociology, and it has been used by
the present authors in numerous studies of
mortality of persons with developmental dis-
abilities.23,33–36 To our knowledge, however, it
has not been widely used in research on can-
cer, physical injuries, or other medical con-
ditions. Our aim here is to show in a non-
technical fashion how it can be used in prac-
tice. We illustrate with analysis of a large data
base on spinal cord injury. As we will see,
the person-year analysis reveals findings on
spinal cord mortality that had not been ap-
parent with the earlier methods.

THE METHOD

Construction of the Person-Year Data Set

The construction is best introduced by an
example. Consider a hypothetical study that
runs for the 6 calendar years 1988–93. We are
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Table 2. Potential Risk Factors Defined at Each
Person-Year

AGE at the midpoint of the person-year
SEX 1 if male, 0 if female
CONDITION a measure of severity of condition;

for illustration, we assume here
that there are three levels: mild
(level 1), moderate (level 2), and
severe (level 3); in practice, there
may be several such variables,
perhaps corresponding to disabili-
ties in the cognitive, motor, and
self-care domains

TSI time since injury, in years
YEAR calendar year of the person-year,

suitably coded; for illustration, we
have coded YEAR as 1 if the year
is 1990 or later and 0 if not

DIED a binary variable set to 1 if the sub-
ject died in the year in question
and 0 if not

Table 3. Construction of person-years for subject A

Subject Age Sex Condition TSI Year Died

A
A
A
A
A

50
51
52
53
54

1
1
1
1
1

2
2
3
3
3

2
3
4
5
6

0
0
1
1
1

0
0
0
0
1

interested in the effect on mortality risk of the
variables in Table 2.

Consider Subject A, a male whose injury
(or onset of the disease) occurred in late 1985.
He entered the study at the beginning (Jan-
uary 1988) at age 50 and died in October
1992. His severity was moderate (level 2) for
the first 2 years in the study and became se-
vere thereafter. This subject contributes 5 per-
son-years to the study, as shown in Table 3.

It is important to note that each row in Ta-
ble 3 contains the information for a single
year. The last row, for example, corresponds
to the fifth year of the study (1992). In this
year, the subject’s age was 54, his condition
was 3 (severe), he was 6 years postinjury, the
year was in the 1990s (YEAR � 1), and he

died (DIED � 1). Because he died in 1992, he
does not contribute a sixth person year for
1993.

Note that the ordinal scale, severity of dis-
ability, is treated here as an interval scale
with values 1, 2, or 3. It would be possible
instead to code the scale with 2 dummy vari-
ables and then test whether the interval scale
assumption should be rejected.

The Analytical Method

In the above example, each subject contrib-
utes up to 6 person-years to the data set.
From this point, one works with this new
person-year data set rather than the original
subject-based information. For example, it
may be helpful to provide descriptive statis-
tics on the person-years broken down by cal-
endar year, time since injury, age, etc.

To analyze the relationship of the various
factors to mortality risk, the key tool is logis-
tic regression.37 Here the unit of analysis is a
single person-year, the dependent variable is
DIED (0 or 1), and the predictor variables are
the covariates age, sex, severity, etc., for that
year. Formally, we are fitting the model

logit{P(died)}

� b � b AGE � b SEX � b CONDITION0 1 2 3

� b TSI � b YEAR,4 5 (1)

where logit(p) is defined to be log{p/(1 � p)}.
There is great flexibility in the choice of

covariates to associate with a given year. In
addition to the usual risk factors, it is, for ex-
ample, possible to include a patient’s charac-
teristics from previous years. To take the
above illustration, one might include not only
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the patient’s severity of condition in the cur-
rent year but also the condition in the previ-
ous year and/or the average condition over
the several preceding years. One can thus in-
vestigate whether the current conditions are
enough to determine the current risk. This
could be viewed as a test of a Markov con-
dition.38 We are not aware of any published
application of this kind using the Cox model
(although it would be possible using time-
varying covariates). Such person-year analy-
ses have, however, been used in our own
work.33–34

Choice of Time-Interval

For convenience, we refer to person-years
in this article, but any sufficiently short time
interval would give almost identical results.
Suppose, for example, that we switch from
person-years to person-months. The data set
becomes 12 times larger, as each row (a per-
son-year) is replaced by 12 person-months.
All the variables in these 12 rows are identical
to those of the original person-year except
that, if the individual died in the year, then
DIED � 1 for the last month and 0 for all the
earlier months. In addition, the time since in-
jury variable would need to be redefined.

One reason to consider a switch from years
to a shorter interval is the requirement that
the interval be short enough that p, the chance
of dying in the interval, is small. Technically,
the condition is that p is small enough that
terms involving p2 may be neglected. In prac-
tice, it is usually sufficient if the p’s are no
more than about 5%.

If the above condition holds, then logit(p)
can be approximated by log(p). It can then
easily be shown that, in equation (1), the es-
timates of all the b’s will be unchanged by the
switch of units except that the intercept b0

will decrease. A change from person-years to
person-months, for example, would change b0

to b0 � log(12).
An advantage of using a shorter interval,

such as a month, is that a more refined treat-
ment of time is possible. For example, a sub-
ject entering the study in October can con-

tribute 2 person months (November and De-
cember) to the data set. Similarly, if a subject’s
condition changes from level 1 to level 2 in
October, the earlier months can be coded as
1 and the later months as 2.

It may seem from the above that one
should ideally work with very short intervals,
such as person-days. In theory this is so, but
there is a practical problem: the number of
person-days in a study may run into the mil-
lions, and for some purposes, this will make
the computer runs unreasonably slow.

Are the Person-Years Independent?

An objection to the method that is com-
monly raised at first encounter is that, for ex-
ample, it treats 10 person-years from one sub-
ject in the same way as if 10 different subjects
each contributed 1 year. It appears that we
are assuming the 10 person-years to be in-
dependent even though they may all be con-
tributed by 1 subject. In fact, however, the
person-years are not assumed to be indepen-
dent. To illustrate, consider a subject who
contributes 2 person-years and dies during
the second year. The contribution to the like-
lihood function39 can be factored into the
product of (1) the probability that the subject
survives the first year and (2) the probability
that he dies during the second year given that
he is alive at the beginning of it.

Technically, the latter is a conditional prob-
ability,39(p61) and the factorization is a standard
procedure in probability theory that requires
no independence assumption.39 The argu-
ment is completely general. It follows that the
entire likelihood function for the data is a
product over all the person years of the prob-
abilities of survival or death. Since all infer-
ential procedures (estimation, hypothesis
testing) are based on the likelihood function,
this means that, when using logistic regres-
sion, we may treat the person-years as if they
were independent. As noted by Singer and
Willett,29 all the standard inferential and di-
agnostic procedures for logistic regression
may be applied.

This point is not always appreciated. Hos-
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mer and Lemeshow, for example, incorrectly
state in their well-known text37 that

It is not clear how or if it is possible at all to use
the diagnostics computed by logistic regression
software to assess the fit of the model. . . . [E]ach
subject may contribute more than one line of data
to the analysis and the software assumes each
line corresponds to an independent subject. Sum-
mary statistics such as the deviance, as computed
in logistic regression software, may not be mean-
ingful.

Relationship of the Method to Traditional
Survival Analysis

The logistic regression analysis of person-
years is actually a form of discrete survival
analysis. More specifically, in the limit as the
time interval (years, months, etc.) becomes
small, the method becomes equivalent to the
Cox model with time-varying covariates. We
summarize the relevant mathematical facts
that justify this statement.

(1) Consider a Cox model for survival anal-
ysis and assume that the underlying baseline
hazard rate27(p206) is piecewise constant (ie, we
can partition the study period into intervals
within which the hazard rate is constant).
This assumption can always be satisfied if
one works with a sufficiently small time in-
terval. Thus, if a year is too long for the haz-
ard rate to be assumed constant, one can
work with months or days. Suppose, for sim-
plicity, that the hazard rate is constant
throughout each year.

(2) Given this, it can be shown40 that the
Cox model is exactly equivalent to a Poisson
regression model.41 In this discrete analysis,
there is a binary lived/died variable and a
covariate vector x for each person-year. All
person-years with the same covariates x are
grouped, and the group total number of
deaths y(x) is assumed to follow a Poisson
distribution with mean exp{��x}. Here � is a
vector of regression parameters to be esti-
mated.

(3) Provided that the probability of dying
in any given year is small (which will be true
if the time interval is sufficiently small), this
Poisson regression model can be conveniently

fitted and analyzed using logistic regres-
sion.41,42

EXAMPLE: SPINAL CORD INJURY

We apply the person-year logistic analysis
to data from the National Model Systems Da-
tabase15 on persons with spinal cord injury
(SCI). Additional records on persons who
were treated at model systems but were not
eligible for the national database were also in-
cluded. This data has been extensively ana-
lyzed previously by DeVivo and associates
using the Cox model.16,17,43,44

The data has been described elsewhere.14

Briefly, persons with a traumatic SCI from
1973 to 1998 and seen within 1 year of injury
at either a model SCI care system or a Shrin-
er’s Hospital SCI unit were included in the
augmented database. We considered only per-
sons over age 10 who were not ventilator de-
pendent (Table 4).

This data was used to construct a data set
of 224,594 person-years from 18,872 subjects,
of whom 3114 died during the study period.
This corresponds to a crude mortality rate of
14 per 1000 person-years. We used standard
methods for logistic regression modeling.37

Regarding model selection methods, we
concur with Hasmer and Lemeshow37 that it
is better to take account of biological plausi-
bility and knowledge of the subject matter
than to rely entirely on automatic methods
such as stepwise logistic regression. When
analyzing large person-year data sets, we
have found likelihood-based model compari-
sons to be especially helpful. Specifically, the
deviance statistic45—minus twice the log-like-
lihood ratio—is perhaps the most useful way
of comparing two models when one is nested
in the other, and the Akaike information sta-
tistic27 is helpful when the models are not
nested.

Table 5 is our preferred model. Row 1
shows that males have 1.30 times the odds of
dying as females, other things being equal.
As would be expected, high quads—persons
with a C1–C4 injury—are at much higher risk
than others. For example, C1–C4’s with com-
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Table 4. Variable Names and Definitions

Sex Male compared with female
White Caucasian versus other
Violence Violent etiology (cause of injury)

versus other (accidental) causes
Age Chronological age of the person

during the person-year
Calendar year Calendar year corresponding to the

person-year
Neurological

level
Highest spinal vertebra with normal

sensory and motor function. This
could be any of the 8 cervical
vertebrae (referred to as C1–C8),
12 thoracic, 5 lumbar or 5 sacral

Frankel grade Severity of the injury, with catego-
ries A (complete injury: no sen-
sory or motor function below the
level of injury), B (incomplete
injury: sensory but not motor), C
(incomplete: some motor func-
tion preserved), and D (incom-
plete: a majority of motor func-
tion preserved)

Time since injury Integer number of years since date
of injury for the current person-
year

plete injuries (Frankel grade A) have 3.30
times the odds of dying compared with those
in the reference group (others) and 1.66 (�
3.30/1.99) times the odds of those with a C5–
C8A injury.

The results from Table 5 are broadly simi-
lar to those reported earlier by DeVivo et al.17

In particular, mortality is higher during both
the first (odds ratio [OR] � 1.00) and the sec-
ond (0R � 0.66) years postinjury than it is
subsequently (OR � 0.47), other factors being
equal. The focus on person-years, however,
enabled us to examine the interaction of sec-
ular trend and time since injury more closely.
To this end, we refitted the model allowing a
separate dummy for each combination of
time period (calendar year interval) and time
since injury. The reference group was the
1973–79 period for the first year after injury.
The odds ratios are shown in Table 6.

Table 6 shows a steady decline in mortality
during the first postinjury year over the
1973–97 study period. This no doubt reflects

the improvement in care and treatment. Mor-
tality during the second and subsequent
years has also decreased, but the decline is
less marked and there is even a hint of an
upturn during the second postinjury year in
the most recent period.

Using the Cox model, DeVivo et al17 re-
ported a stronger upturn in mortality rates
during this most recent period. It is possible
that this is an artifact of that statistical meth-
od since persons injured more recently tend
to be censored after a much shorter interval
than those injured many years ago, and early
deaths tend to have a greater impact on Cox
model results than later deaths. However, the
Cox model analysis used a slightly more re-
cent version of the database that included
1998 and part of 1999, and this might also
explain part of the difference.

DISCUSSION

Survival analysis, usually considered a lon-
gitudinal analysis of cohort data, can be car-
ried out by logistic regression—a simple
cross-sectional method. The method is easy
to apply using standard computer packages
such as SAS46 that come with a variety of op-
tions and diagnostics. As noted in the previ-
ous section, tests based on the likelihood
function can be particularly helpful. Further,
a graphical method is available if one wishes
to compare risk-adjusted mortality rates for
two or more groups, such as a treatment and
a control group.47

The method can be used with endpoints
other than death. For example, one could
model the likelihood that a cancer metasta-
sizes during a given year as a function of
treatment, age, duration of time in the present
stage of cancer, and other factors. For a pa-
tient with chronic disabilities, the chances of
improvement or decline in functioning over
the year (or other time period) can be simi-
larly modeled.

The focus on the person-year as unit of
analysis, rather than an individual’s entire
survival history, makes it easy to disentangle
the effect of factors such as current age, time
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Table 5. Logistic regression model

Term Odds Ratio
95%

confidence interval

Gender
Male
Female

1.30
1.00

(1.18, 1.44)

Race

Caucasian
Other

0.96
1.00

(0.88, 1.04)

Cause of injury

Violent
Accidental

1.26
1.00

(1.12, 1.42)

Age group
10–20
20–30
30–40
40–50
50–60
60–70
70�

1.00
1.78
3.30
5.84

10.62
20.35
56.55

(1.38, 2.29)
(2.57, 4.23)
(4.54, 7.50)
(8.25, 13.67)

(15.80, 26.20)
(43.88, 72.87)

Calendar year
1973–79
1980–84
1985–89
1990�

1.00
0.74
0.65
0.57

(0.65, 0.85)
(0.57, 0.74)
(0.51, 0.65)

Neurological level and frankel grade of injury
C1–C4 A
C5–C8 A
T1–S5 A
C1–C4 BC
C5–C8 BC
T1–S5 BC
C1–C4 D
C5–C8 D
T1–S5 D
All others

3.30
1.99
1.08
1.92
1.37
1.16
0.88
0.73
0.68
1.00

(2.80, 3.89)
(1.72, 2.31)
(0.92, 1.25)
(1.58, 2.34)
(1.16, 1.61)
(0.97, 1.39)
(0.71, 1.07)
(0.61, 0.87)
(0.56, 0.82)

Time since injury
�1 year

1 year
2 years or

more

1.00
0.66
0.47

(0.57, 0.76)
(0.43, 0.51)

Table 6. Odds ratios for combinations of calendar
year and time since injury

Calendar
year

Years since injury

1 2 3�

1973–79
1980–84
1985–89
1990–93
1994–97

1.00*
0.73
0.72
0.52
0.41

0.60
0.49
0.35
0.36
0.42

0.42
0.32
0.28
0.26
0.26

* The reference group.

since injury, and calendar year. Further, there
is no difficulty in handling persons who enter
the study some years after injury. These tasks
are much more difficult in the framework of
the Cox regression analysis.

Researchers rarely raise questions when
they are unfamiliar with the tools to answer
them. As a result, they may miss the oppor-
tunity to extract useful information from
their studies. For this reason, we encourage
the use of the person-year approach in mor-
tality studies. As an example, Strauss et al8

found a secular trend in survival of children
in a vegetative state: survival rates of infants
aged under 2 years improved markedly dur-
ing the 1981–96 study period, whereas little
or no improvement was observed for older
children. These findings emerged quite nat-
urally from the person-year approach, but re-
searchers equipped only with cohort meth-
ods may not have raised the question at all.

This work was supported in part by grant
H133N50009–96A from the National Institute on Dis-
ability and Rehabilitation Research, Office of Special
Education and Rehabilitative Services, US Department
of Education, Washington, DC, to the University of Al-
abama at Birmingham. The authors express their grat-
itude to Richard D. Rutt for his assistance with data
base development and data processing.

REFERENCES

1. Strauss DJ, Shavelle RM, Anderson TW. Life ex-
pectancy of children with cerebral palsy. Pediatr
Neurol. 1998;18:143–149.

2. Strauss DJ, Shavelle RM. Life expectancy of adults
with cerebral palsy. Dev Med Child Neurol. 1998;40:
369–375.

3. Strauss DJ, Cable W, Shavelle RM. Causes of excess
mortality in cerebral palsy. Dev Med Child Neurol.
1999;41:580–585.

4. Hutton JL, Cooke T, Pharoah POD. Life expectancy



JOURNAL OF INSURANCE MEDICINE

224

in children with cerebral palsy. Br Med J. 1994;309:
431–435.

5. Maudsley G, Hutton JL, Pharoah POD. Cause of
death in cerebral palsy: a descriptive study. Arch
Dis Child. 1999;81:390–394.

6. Chrichton JU, Mackinnon M, White CP. The life
expectancy of persons with cerebral palsy. Dev
Med Child Neurol. 1995;37:567–576.

7. Ashwal S, Eyman RK, Call TL. Life expectancy of
children in a persistent vegetative state. Pediatr
Neurol. 1994;10:27–33.

8. Strauss DJ, Shavelle RM, Ashwal S. Life expectan-
cy and median survival time in the permanent
vegetative state. Pediatr Neurol. 1999;21:626–631.

9. Sazbon L, Groswasser Z. Medical complications
and mortality of patients in the postcomatose un-
awareness (PC-U) state. Acta Neurochir (Wien).
1991;112:110–112.

10. Sazbon L, Zagrega R, Ronen J, Solzi P, Costeff H.
Course and outcome of patients in vegetative state
of nontraumatic aetiology. J Neurol Neurosurg Psy-
chiatry. 1993;56:407–109.

11. Higashi K, Hatano M, Abiko S, et al. Clinical anal-
ysis of patients recovered from persistent vegeta-
tive state. No To Shinkei. 1978;30:27–35.

12. Higashi K, Sakata Y, Hatano M, et al. Epidemio-
logical studies on patients with a persistent vege-
tative state. J Neurol Neurosurg Psychiatry 1977;40:
876–885.

13. Higashi K, Hatano M, Abiko S, et al. Five year
follow-up study of patients with persistent vege-
tative state. J Neurol Neurosurg Psychiatry. 1981;44:
552–554.

14. Richards JS, Go BK, Rutt RD, Lazarus PB. The na-
tional spinal cord injury collaborate database. In:
Stover SL, DeLisa JA, Whiteneck GG, eds. Spinal
Cord Injury: Clinical Outcomes from the Model Sys-
tems. Gaithersburg, Md: Aspen; 1995;10–20.

15. Stover SL, DeLisa JA, Whiteneck GG, eds. Spinal
Cord Injury: Clinical Outcomes from the Model Sys-
tems. Gaithersburg, Md: Aspen; 1995.

16. DeVivo MJ, Stover SL. Long-term survival and
causes of death. In Stover SL, DeLisa JA, White-
neck GG, eds. Spinal Cord Injury: Clinical Outcomes
from the Model Systems. Gaithersburg, Md: Aspen;
1995:289–316.

17. DeVivo MJ, Krause JS, Lammertse DP. Recent
trends in mortality and causes of death among
person with spinal cord injury. Arch Phys Med Reh-
abil. 1999;80:1411–1419.

18. Frankel HL, Coll JR, Charlifue SW, et al. Long-
term survival in spinal cord injury: a fifty year
investigation. Spinal Cord. 1998;36:266–274.

19. Coll JR, Frankel HL, Charlifue SW, Whiteneck GG.
Evaluating neurological group homogeneity in as-
sessing the mortality risk for people with spinal
cord injuries. Spinal Cord. 1998;36:275–179.

20. Yeo JD, Walsh J, Rutkowski S, Soden R, Craven M,
Middleton J. Mortality following spinal cord inju-
ry. Spinal Cord. 1988;36:329–336.

21. Hartkopp A, Bronnum-Hansen H, Seidenschnur
A-M, Biering-Sorensen F. Survival and cause of
death after traumatic spinal cord injury: a long-
term epidemiological survey from Denmark. Spi-
nal Cord. 1997;35:76–85 [published errata in Spinal
Cord, 1997;35:862–864].

22. Foulkes MA, Eisenberg HM, eds. Report on the
traumatic coma data bank. J Neurosurg. 1991;
74(suppl).

23. Strauss DJ, Shavelle RM, Anderson TW. Long-term
survival of children and adolescents after trau-
matic brain injury. Arch Phys Med Rehabil. 1998;79:
1095–1100.

24. Strauss DJ, Shavelle RM, DeVivo MJ. Long-term
mortality risk after traumatic brain injury [letter to
editor]. J Insurance Med. 1999;31:104–105.

25. Roberts AH. Severe Accidental Head Injury: An As-
sessment of Long-Term Prognosis. London: Macmil-
lan; 1979.

26. Lewin W, Marshall TFD, Roberts AH. Long-term
outcome after severe head injury. Br Med J. 1979;
2(6204):1533–1538.

27. Collett D. Modelling Survival Data in Medical Re-
search. London: Chapman and Hall; 1994.

28. Lee ET. Statistical Methods for Survival Data Analysis.
New York: Wiley; 1992.

29. Singer JD, Willett JB. Modeling the days of our
lives: using survival analysis when designing and
analyzing longitudinal studies of duration and the
timing of events. Psych Bull. 1991;110:268–190.

30. Cupples LA, D’Agostino RB, Anderson K, Kannel
WB. Comparison of baseline and repeated mea-
sure covariate techniques in the Framingham
Heart Study. Stat Med. 1998;7:205–222.

31. Guilkey DK, Rindfuss RR. Logistic regression mul-
tivariate life tables. Sociol Methods Res. 1987;16:276–
300.

32. McLanahan S. Family structure and dependency:
early transition to female household headship. De-
mography. 1988;25:1–16.

33. Strauss DJ, Kastner TA. Comparative mortality of
people with developmental disability in institu-
tions and in the community. Am J Ment Retard.
1996;101:26–40.

34. Strauss DJ, Kastner TA, Shavelle RM. Mortality in
persons with developmental disabilities, 1985–94.
Ment Retard. 1998;30:368–391.

35. Strauss DJ, Shavelle RM, Baumeister AA, Ander-
son TW. Mortality of persons with developmental
disabilities after transfer into community care. Am
J Ment Retard. 1998;102:569–581.

36. Strauss DJ, Kastner TA, Ashwal S, White JF. Tube-
feeding and mortality in children with severe dis-



STRAUSS ET AL—ANALYSIS OF LONGITUDINAL MORTALITY STUDIES

225

abilities and mental retardation. Pediatrics. 1997;99:
358–362.

37. Hosmer D, Lemeshow S. Applied Logistic Regression.
New York, NY: Wiley; 1989.

38. Breiman L. Probability and Stochastic Processes. 2nd
ed. Palo Alto, Ca: The Scientific Press; 1986.

39. Hogg RV, Craig AT. Introduction to Mathematical Sta-
tistics. 4th ed. New York, NY: Macmillan; 1978.

40. Laird N, Olivier D. Covariance analysis of cen-
sored survival data using log-linear analysis tech-
niques. J Am Stat Assoc. 1981;76:231–240.

41. Agresti A. Categorical Data Analysis. New York, NY:
Wiley; 1990.

42. Efron B. Logistic regression, survival analysis, and

the Kaplan-Meier curve. J Am Stat Assoc. 1988;83:
414–425.

43. DeVivo MJ, Kartus PL, Stover SL, Rutt RD, Fine
PR. Seven-year survival following spinal cord in-
jury. Arch Neurol. 1987;44:872–875.

44. DeVivo MJ, Stover SL, Black KJ. Prognostic factors
for 12-year survival after spinal cord injury. Arch
Phys Med Rehabil. 1992;73:156–162.

45. McCullagh P, Nelder JA. Generalized Linear Models.
2nd ed. London: Chapman and Hall; 1989.

46. SAS Institute Inc. SAS/STAT User’s Guide. Version
6. 4th ed. Volume 2. Cary, NC: SAS Institute Inc;
1989.

47. Strauss DJ. On Miettinen’s multivariate confounder
score. J Clin Epidemiol 1998;51:233–236.


	Main Menu
	Table of Contents - Volume 32
	Previous Document
	Go Back
	Search
	Help

